
These slides do not contain legal advice

CURRICULUM
FOSS Training Reference Slides for the OpenChain Specification 1.1

Released under CC0-1.0.
You may use, modify, and share these slides without restriction.
They also come with no warranty.

These slides follow US law. Different legal jurisdictions may have different legal requirements.
This should be taken into account when using these slides as part of a compliance training program.

What is the OpenChain Curriculum?
•The OpenChain Project helps to identify and share the core components
of a Free and Open Source Software (FOSS) compliance program.
•The core of the OpenChain Project is the Specification. This identifies and
publishes the core requirements a FOSS compliance program should satisfy.
•The OpenChain Curriculum supports the Specification by providing
freely available training material.
•These slides help companies satisfy the requirements of the Specification
Section 1.2. They can also be used for general compliance training.

Learn more at: https://www.openchainproject.org

Contents
1. What is Intellectual Property?
2. Introduction to FOSS

Licenses
3. Introduction to FOSS

Compliance
4. Key Software Concepts

for FOSS Review

5. Running a FOSS Review
6. End to End Compliance

Management
(Example Process)

7. Avoiding Compliance Pitfalls
8. Developer Guidelines

FOSS Policy
• <<This is a placeholder slide to identify where your FOSS policy can be found

(OpenChain Specification 1.1, section 1.1.1)>>

•You can get an example FOSS policy via the Linux Foundation
Open Compliance Program at:
https://www.linux.com/publications/generic-foss-policy

https://www.linux.com/publications/generic-foss-policy
https://www.linux.com/publications/generic-foss-policy

CHAPTER 1

What is Intellectual Property?

What is “Intellectual Property”?
•Copyright: protects original works of authorship

• Protects expression (not the underlying idea)
• It covers software, books, and similar works

•Patents: useful inventions that are novel and non-obvious
• Limited monopoly to incentivize innovation

•Trade secrets: protects valuable confidential information
•Trademarks: protects marks (word, logos, slogans, color, etc.) that identify
the source of the product
• Consumer and brand protection; avoid consumer confusion and brand dilution

This chapter will focus on copyright and patents,
the areas most relevant to FOSS compliance.

Copyright Concepts in Software
•Basic rule: copyright protects creative works
•Copyright generally applies to literary works, such as books, movies,
pictures, music, maps
•Software is protected by copyright

• Not the functionality (that’s protected by patents) but the expression (creativity in
implementation details)

• Includes Binary Code and Source Code
•The copyright owner only has control over the work that he or she created,
not someone else’s independent creation
• Infringement may occur if copying without the permission of the author

Copyright Rights Most Relevant to Software
•The right to reproduce the software – making copies
•The right to create “derivative works” – making modifications

• The term derivative work comes from the US Copyright Act
• It is a “term of art” meaning that it has a particular meaning based on the statute and not

the dictionary definition
• In general it refers to a new work based upon an original work to which enough original

creative work has been added so that the new work represents an original work of
authorship rather than a copy

•The right to distribute
• Distribution is generally viewed as the provision of a copy of a piece of software,

in binary or source code form, to another entity (an individual or organization outside
your company or organization)

Note: The interpretation of what constitutes a “derivative work” or a “distribution”
is subject to debate in the FOSS community and within FOSS legal circles

Patent Concepts in Software
•Patents protect functionality – this can include a method of operation,
such as a computer program
• Does not protect abstract ideas, laws of nature

•A patent application must be made in a specific jurisdiction in order to obtain
a patent in that country. If a patent is awarded, the owner has the right to stop
anybody from exercising its functionality, regardless of independent creation
•Other parties who want to use the technology may seek a patent license
(which may grant rights to use, make, have made, sell, offer for sale, and
import the technology)
• Infringement may occur even if other parties independently create the same
invention

Licenses
•A “license” is the way a copyright or patent holder gives permission or
rights to someone else
•The license can be limited to:

• Types of use allowed (commercial / non-commercial, distribution, derivative works / to
make, have made, manufacture)

• Exclusive or non-exclusive terms
• Geographical scope
• Perpetual or time limited duration

•The license can have conditions on the grants, meaning you only get
the license if you comply with certain obligations
• E.g, provide attribution, or give a reciprocal license

•May also include contractual terms regarding warranties, indemnification,
support, upgrade, maintenance

Check Your Understanding
•What type of material does copyright law protect?
•What copyright rights are most important for software?
•Can software be subject to a patent?
•What rights does a patent give to the patent owner?
• If you independently develop your own software, is it possible that
you might need a copyright license from a third party for that software?
A patent license?

CHAPTER 2

Introduction to FOSS Licenses

FOSS Licenses
• FOSS licenses by definition make source code available under terms that
allow for modification and redistribution
• FOSS licenses may have conditions related to providing attributions,
copyright statement preservation, or a written offer to make the source code
available
•One popular set of licenses are those approved by the FOSS Initiative (OSI)
based on their FOSS Definition (OSD). A complete list of OSI-approved
licenses is available at http://www.opensource.org/licenses/

http://www.opensource.org/licenses/

Permissive FOSS Licenses
•Permissive FOSS license: a term used often to describe minimally restrictive
FOSS licenses
• Example: BSD-3-Clause
• The BSD license is an example of a permissive license that allows unlimited

redistribution for any purpose in source or object code form as long as its copyright
notices and the license's disclaimers of warranty are maintained

• The license contains a clause restricting use of the names of contributors for
endorsement of a derived work without specific permission

•Other examples: MIT, Apache-2.0

License Reciprocity & Copyleft Licenses
•Some licenses require that if derivative works (or software in the same file,
same program or other boundary) are distributed, the distribution is under the
same terms as the original work
•This is referred to as a “copyleft” or “reciprocal” effect
• Example of license reciprocity from the GPL version 2.0:

You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed […] under the terms
of this License.

• Licenses that include reciprocity or Copyleft clauses include all versions of
the GPL, LGPL, AGPL, MPL and CDDL

Proprietary License or Closed Source
•A proprietary software license (or commercial license or EULA) has
restrictions on the usage, modification and/or distribution of the software
•Proprietary licenses are unique to each vendor – there are as many variations
of proprietary licenses as there are vendors and each must be evaluated
individually
• FOSS developers often use the term “proprietary” to describe a commercial
non-FOSS license, even though both FOSS and proprietary licenses are based
on intellectual property and provide a license grant to that property

Other Non-FOSS Licensing Situations
• Freeware – software distributed under a proprietary license at no
or very low cost
• The source code may or may not be available, and creation of derivative works is usually restricted
• Freeware software is usually fully functional (no locked features) and available for unlimited use (no

locking on days of usage)
• Freeware software licenses usually impose restrictions in relation to copying, distributing, and

making derivative works of the software, as well as restrictions on the type of usage (personal,
commercial, academic, etc.)

•Shareware – proprietary software provided to users on a trial basis,
for a limited time, free of charge and with limited functionalities or features
• The goal of shareware is to give potential buyers the opportunity to use the program and judge its

usefulness before purchasing a license for the full version of the software
• Most companies are very leery of Shareware, because Shareware vendors often approach

companies for large license payments after the software has freely propagated within their
organizations.

Other Non-FOSS Licensing Situations
• “Non-commercial” – some licenses have most of the characteristics of a
FOSS license, but are limited to non-commercial use (e.g. CC-BY-NC).
• FOSS by definition cannot limit the field of use of the software
• Commercial use is a field of use so any restriction prevents the license from being FOSS

Public Domain
•The term public domain refers to software not protected by law and therefore
usable by the public without requiring a license
•Developers may include a public domain declaration with their software

• E. g., “All of the code and documentation in this software has been dedicated to the public
domain by the authors.”

• The public domain declaration is not the same as a FOSS license

• A public domain declaration attempts to waive or eliminate any intellectual property rights
that the developers may have in the software to make it clear that it can be used without
restriction, but the enforceability of these declarations is subject to dispute within the FOSS
community and its effectiveness at law varies from jurisdiction to jurisdiction

• Often the public domain declaration is accompanied by other terms, such as warranty
disclaimers; in such cases, the software may be viewed as being under a license rather than
being in the public domain

License Compatibility
• License compatibility is the process of ensuring that license terms do not
conflict.
• If one license requires you to do something and another prohibits doing that,
the licenses conflict and are not compatible if the combination of the two
software modules trigger the obligations under a license.
• GPL-2.0 and EPL-1.0 each extend their obligations to “derivative works” which are distributed.
• If a GPL-2.0 module is combined with an EPL-1.0 module and the merged module is distributed, that

module must
• (according to GPL-2.0) be distributed under GPL-2.0 only, and
• (according to EPL-1.0) under EPL-1.0 only.
• The distributor cannot satisfy both conditions at once so the module may not be distributed.
• This is an example of license incompatibility.

The definition of “derivative work” is subject to different views in the FOSS community and
its interpretation in law is likely to vary from jurisdiction to jurisdiction.

Notices
Notices, such as text in comments in file headers, often provide authorship and
licensing information. FOSS licenses may also require the placement of notices in
or alongside source code or documentation to give credit to the author (an
attribution) or to make it clear the software includes modifications.
•Copyright notice – an identifier placed on copies of the work to inform the world
of copyright ownership. Example: Copyright © A. Person (2016)
• License notice – a notice that specifies and acknowledges the license terms and
conditions of the FOSS included in the product.
•Attribution notice – a notice included in the product release that acknowledges
the identity of the original authors and / or sponsors of the FOSS included in the
product.
•Modification notice – a notice that you have made modifications to the source
code of a file, such as adding your copyright notice to the top of the file.

Multi-Licensing
•Multi-licensing refers to the practice of distributing software under two or more
different sets of terms and conditions simultaneously
• E.g., when software is “dual licensed,” the copyright owner gives each recipient the choice of

two licenses
•Note: This should not be confused for situations in which a licensor imposes
more than one license, and you must comply with all of them

Check Your Understanding
•What is a FOSS license?
•What are typical obligations of a permissive FOSS license?
•Name some permissive FOSS licenses.
•What does license reciprocity mean?
•Name some copyleft-style licenses.
•What needs to be distributed for code used under a copyleft license?
•Are Freeware and Shareware software considered FOSS?
•What is a multi-license?
•What information may you find in FOSS Notices, and how may the notices be
used?

CHAPTER 3

Introduction to FOSS Compliance

FOSS Compliance Goals
•Know your obligations. You should have a process for identifying and tracking
FOSS components that are present in your software

•Satisfy license obligations. Your process should be capable of handling FOSS
license obligations that arise from your organization’s business practices

What Compliance Obligations Must Be
Satisfied?
Depending on the FOSS license(s) involved, your compliance obligations may
consist of:
• Attribution and Notices. You may need to provide or retain copyright and license text in the

source code and/or product documentation or user interface, so that downstream users know
the origin of the software and their rights under the licenses. You may also need to provide
notices regarding modifications, or full copies of the license.

• Source code availability. You may need to provide source code for the FOSS software, for
modifications you make, for combined or linked software, and scripts that control the build
process.

• Reciprocity. You may need to maintain modified versions or derivative works under the same
license that governs the FOSS component.

• Other terms. The FOSS license may restrict use of the copyright holder name or trademark,
may require modified versions to use a different name to avoid confusion, or may terminate
upon any breach.

FOSS Compliance Issues: Distribution
•Dissemination of material to an outside entity

• Applications downloaded to a user’s machine or mobile device
• JavaScript, web client, or other code that is downloaded to the user’s machine

• For some FOSS licenses, access via a computer network can be
a “trigger” event
• Some licenses define the trigger event to include permitting access to software running

on a server (e.g., all versions of the Affero GPL if the software is modified) or in the case
of “users interacting with it remotely through a computer network”

FOSS Compliance Issues: Modification
•Changes to the existing program (e.g., additions, deletions of code in a file,
combining components together)
•Under some FOSS licenses, modifications may cause additional obligations
upon distribution, such as:
• Providing notice of modification
• Providing accompanying source code
• Licensing modifications under the same license that governs the FOSS component

FOSS Compliance Program
Organizations that have been successful at FOSS compliance have created their
own FOSS Compliance Programs (consisting of policies, processes, training and
tools) to:
1. Facilitate effective usage of FOSS in their products (commercial or

otherwise)
2. Respect FOSS developer/owner rights and comply with license obligations
3. Contribute to and participate in FOSS communities

Implementing Compliance Practices
Prepare business processes and sufficient staff to handle:

• Identification of the origin and license of all internal and external software

•Tracking FOSS software within the development process

•Performing FOSS review and identifying license obligations

• Fulfillment of license obligations when product ships

•Oversight for FOSS Compliance Program, creation of policy, and compliance
decisions

•Training

Compliance Benefits
Benefits of a robust FOSS Compliance program include:
• Increased understanding of the benefits of FOSS and how it impacts your
organization

• Increased understanding of the costs and risks associated with using FOSS

• Increased knowledge of available FOSS solutions

•Reduction and management of infringement risk, increased respect of FOSS
developers/owners’ licensing choices

• Fostering relationships with the FOSS community and FOSS organizations

Check Your Understanding
•What does FOSS compliance mean?

•What are two main goals of a FOSS Compliance Program?

• List and describe important business practices of a FOSS Compliance
Program.

•What are some benefits of a FOSS Compliance Program?

CHAPTER 4

Key Software Concepts
for FOSS Review

How do you want to use a FOSS component?
Common scenarios include:
• Incorporation
• Linking
• Modification
• Translation

Incorporation
A developer may copy portions of a
FOSS component into your software
product.

Relevant terms include:
• Integrating
• Merging
• Pasting
• Adapting
• Inserting

Linking
A developer may link or join a FOSS
component with your software product.

Relevant terms include:
• Static/Dynamic Linking
• Pairing
• Combining
• Utilizing
• Packaging
• Creating interdependency

Modification
A developer may make
changes to a FOSS
component, including:

•Adding/injecting new
code into the FOSS
component
• Fixing, optimizing or
making changes to the
FOSS component
•Deleting or removing
code

Fixing
Optimizing
Changing

Adding
Injecting

Deleting

Translation
A developer may transform the code
from one state to another.

Examples include:
• Translating Chinese to English
• Converting C++ to Java
• Compiling into binary

Development Tools
Development tools may perform
some of these operations
behind the scenes.

For example, a tool may inject
portions of its own code into
output of the tool.

Inject material

Modify the material

Translate the material

How is the FOSS component distributed?
•Who receives the software?
• Customer/Partner
• Community project
• Another legal entity within the business group (this may count as

distribution)

•What format for delivery?
• Source code delivery
• Binary delivery
• Pre-loaded onto hardware

Check Your Understanding
•What is incorporation?
•What is linking?
•What is modification?
•What is translation?
•What factors are important in assessing a distribution?

CHAPTER 5

Running a FOSS Review

FOSS Review
•After Program and Product Management and Engineers have
reviewed proposed FOSS components for usefulness and quality, a review
of the rights and obligations
associated with the use of the selected components should be initiated
•A key element to a FOSS Compliance Program is a FOSS Review process. This
process is where a company can analyze the FOSS software it uses and
understand its rights and obligations
•The FOSS Review process includes the following steps:

• Gather relevant information
• Analyze and understand license obligations
• Provide guidance compatible with company policy and business objectives

Initiating a FOSS Review

Anyone working with FOSS in the company should be able to initiate a FOSS
Review, including Program or Product Managers, Engineers, and Legal.
Note: The process often starts when new FOSS-based software is selected by
engineering or outside vendors.

Initiate a FOSS
Review

Product Manager

Program Manager

 Engineer

What information do you need to gather?
When analyzing FOSS usage, collect information about the identity of the FOSS
component, its origin, and how the FOSS component will be used. This may
include:

● Package name
● Status of the community around the

package (activity, diverse membership,
responsiveness)

● Version
● Download or source code URL
● Copyright owner
● License and License URL
● Attribution and other notices and URLs
● Description of modifications intended to be

made

● List of dependencies
● Intended use in your product
● First product release that will include the

package
● Location where the source code will be

maintained
● Possible previous approvals in another

context
● If from an external vendor:
● Development team's point of contact
● Copyright notices, attribution, source code

for vendor modifications if needed to satisfy
license obligations

FOSS Review Team

A FOSS Review team includes the company representatives that support, guide, coordinate and
review the use of FOSS. These representatives may include:
• Legal to identify and evaluate license obligations

• Source code scanning and tooling support to help identify and track FOSS usage

• Engineering Specialists working with business interests, commercial licensing, export
compliance, etc., who may be impacted by FOSS usage

Initiate a FOSS
Review

Product Manager

Program Manager

 Engineer
Legal Scanning Specialists

Analyzing Proposed FOSS Usage

The FOSS Review team should assess the information it has gathered before providing guidance
for issues. This may include scanning the code to confirm the accuracy of the information.

The FOSS Review team should consider:
• Is the code and associated information complete, consistent and accurate?
• Does the declared license match what is in the code files?
• Does the license permit use with other components of the software?

Legal Scanning Specialists

Source Code Scanning Tools
•There are many different automated source code scanning tools.
•All of the solutions address specific needs and - for that reason - none will
solve all possible challenges
•Companies pick the solution most suited to their specific market area and
product
•Many companies use both an automated tool and manual review
•A good example of freely available source code scanning tool is FOSSology,
a project hosted by the Linux Foundation:
https://www.fossology.org

https://www.fossology.org/
https://www.fossology.org/

Working through the FOSS Review

The FOSS Review process crosses disciplines, including engineering, business, and legal teams. It
should be interactive to ensure all those groups correctly understand the issues and can create
clear, shared guidance.

Initiate a FOSS
Review

Product Manager

Program Manager

 Engineer
Legal ScanningSpecialists

Work

Guidance

FOSS Review Oversight

The FOSS Review process should have executive oversight to resolve disagreements and approve
the most important decisions.

Initiate a FOSS
Review

Product Manager

Program Manager

 Engineer
Legal ScanningSpecialists

Work

Guidance

Executive Review Committee

Check Your Understanding
•What is the purpose of a FOSS Review?
•What is the first action you should take if you want to use FOSS components?
•What should you do if you have a question about using FOSS?
•What kinds of information might you collect for a FOSS review?
•What information helps identify who is licensing the software?
•What additional information is important when reviewing a FOSS component
from an outside vendor?
•What steps can be taken to assess the quality of information collected in a
FOSS Review?

CHAPTER 6

End to End Compliance Management
(Example Processes)

Introduction
•Compliance management is a set of actions that manages OSS components
used in products. Companies may have similar processes in place for
proprietary components. FOSS components are called "Supplied Software" in
the OpenChain specification.
•Such actions often include:

• Identifying all the FOSS components used in Supplied Software
• Identifying and tracking all obligations created by those components
• Confirming that all obligations have been or will be met

•Small companies may use a simple checklist and enterprises a detailed
process.

Incoming
FOSS

FOSS identified;
Obligations metCompliance

Process

Example Small to Medium Company Checklist
Ongoing Compliance Tasks:
1. Discover all FOSS early in the procurement/development cycle
2. Review and Approve all FOSS components used
3. Verify the information necessary to satisfy FOSS obligations
4. Review and approve any outbound contributions to FOSS projects

Support Requirements:
1. Ensure adequate compliance staffing and designate clear lines of responsibility
2. Adapt existing Business Processes to support the FOSS compliance program
3. Have training on the organization’s FOSS policy available to everyone
4. Track progress of all FOSS compliance activities

You can get detailed checklists for these items here: https://www.linuxfoundation.org/projects/opencompliance/self-assessment-compliance-checklist

Example
Enterprise Process

Queued for Process

Id
en

tif
ic

at
io

n

A
ud

it

Re
so

lv
e

Is
su

es

Re
vi

ew
s

A
pp

ro
va

ls

Re
gi

st
ra

tio
n

N
ot

ic
es

Ve
rif

ic
at

io
ns

Di
st

rib
ut

io
n

Ve
rif

ic
at

io
nsOwn Proprietary

Software

3rd Party Software

FOSS

Outgoing Software

Notices & Attributions

Written Offer

Scan or audit source code
– and –

Confirm origin and
license of source

code

Resolve any
audit issues in line with
company FOSS policies

Identify FOSS
components for

review

Verify source code
packages for distribution

– and –
Verify appropriate notices

are provided

Record approved
software/version
in inventory per
product and per

release

Publish source code,
notices and provide

written offer

Review and approve
compliance record of

FOSS software
components

Compile notices
for publication

Post publication
verifications

Example of Compliance Management End-to-End Process

• Outcome:
• A compliance record is created (or updated) for the FOSS
• An audit is requested to review the source code with a

scope a defined as exhaustive or limited according to
FOSS policy requirements.

Incoming:
FOSS Outgoing:

FOSS + Mods

Id
en

tif
ic

at
io

n

A
ud

it

Re
so

lv
e

Is
su

es

Re
vi

ew
s

A
pp

ro
va

l
s

Re
gi

st
ra

ti
on

N
ot

ic
es

Ve
rif

ic
at

i
on

s
Di

st
rib

ut
i

on
Ve

rif
ic

at
i

on
s

• Steps:
• Incoming requests from engineering
• Scans of the software
• Due diligence of 3rd-party software
• Manual recognition of new components added to

the repository

Identify FOSS components

Identify and Track FOSS Usage

A
ud

it

id
en

tif
ic

at
i

on

Re
so

lv
e

Is
su

es

Re
vi

ew
s

A
pp

ro
va

ls

Re
gi

st
ra

tio
n

N
ot

ic
es

Ve
rif

ic
at

io
ns

Di
st

rib
ut

io
n

Ve
rif

ic
at

io
ns

• Outcome:
• An audit report identifying:

1. The origins and licenses of the source code
2. Issues that need resolving

• Steps:
• Source code for the audit is identified
• Source may be scanned by a software tool
• “Hits” from the audit or scan are reviewed and

verified as to the proper origin of the code
• Audits or scans are performed iteratively based

on the software development and release
lifecycles

Identify FOSS licenses

Auditing Source Code
Incoming:

FOSS
Outgoing:

FOSS + Mods

• Outcome:
A resolution for each of the flagged files in the
report and a resolution for any flagged license
conflict

• Steps:
• Provide feedback to the appropriate engineers to

resolve issues in the audit report that conflict with
your FOSS policy

• The appropriate engineers then conduct FOSS
Reviews on the relevant source code (see next slide
for template)

Resolve all issues identified in the audit

Resolving Issues

Re
so

lv
in

g
Is

su
es

id
en

tif
ic

at
io

n

A
ud

it

Re
vi

ew
s

A
pp

ro
va

ls

Re
gi

st
ra

tio
n

N
ot

ic
es

Ve
rif

ic
at

io
ns

Di
st

rib
ut

io
n

Ve
rif

ic
at

io
ns

Incoming:
FOSS Outgoing:

FOSS + Mods

Proprietary

Legend

3rd Party Commercial

GPL

LGPL

FOSS Permissive

Function call
Socket interface

(fc)

(si)

System call
(sc)

Shared headers
(sh)

User Space

Kernel Space

Hardware

[Insert Components]

[Insert Components]

[Insert Components]

[Insert interaction method]

[Insert interaction method]

Architecture Review (Example Template)

Re
vi

ew
s

id
en

tif
ic

at
io

n

A
ud

it

Re
so

lv
e

Is
su

es

A
pp

ro
va

ls

Re
gi

st
ra

tio
n

N
ot

ic
es

Ve
rif

ic
at

io
ns

Di
st

rib
ut

io
n

Ve
rif

ic
at

io
ns

Outcome:
• Ensure the software in the audit report conforms with

FOSS policies

• Preserve audit report findings and mark resolved issues
as ready for the next step (i.e. Approval)

Steps:
• Include appropriate authority levels in review staff

• Conduct review with reference to your FOSS policy

Review the resolved issues to confirm it matches your FOSS policy

Performing Reviews

Incoming:
FOSS

Outgoing:
FOSS + Mods

• Based on the results of the software audit and review in previous
steps, software may or may not be approved for use

• The approval should specify versions of approved FOSS components,
the approved usage model for the component, and any other
applicable obligations under the FOSS license

• Approvals should be made at appropriate authority levels

A
pp

ro
va

ls

id
en

tif
ic

at
i

on A
ud

it

Re
so

lv
e

Is
su

es

Re
vi

ew
s

Re
gi

st
ra

tio
n

N
ot

ic
es

Ve
rif

ic
at

io
ns

Di
st

rib
ut

io
n

Ve
rif

ic
at

io
ns

Approvals

Incoming:
FOSS

Outgoing:
FOSS + Mods

• Once a FOSS component has been approved for usage in a
product, it should be added to the software inventory for that
product

• The approval and its conditions should be registered in a tracking
system

• The tracking system should make it clear that a new approval is
needed for a new version of a FOSS component or if a new usage
model is proposed

Re
gi

st
ra

tio
n

id
en

tif
ic

at
i

on A
ud

it

Re
so

lv
e

Is
su

es

Re
vi

ew
s

A
pp

ro
va

ls

N
ot

ic
es

Ve
rif

ic
at

io
ns

Di
st

rib
ut

io
n

Ve
rif

ic
at

io
ns

Registration / Approval Tracking

Incoming:
FOSS

Outgoing:
FOSS + Mods

•Prepare appropriate notices for any FOSS used in a product release:
• Acknowledge the use of FOSS by providing full copyright and attribution notices
• Inform the end user of the product on how to obtain a copy of the FOSS source code

(when applicable, for example in the case of GPL and LGPL)
• Reproduce the entire text of the license agreements for the FOSS code included in the

product as needed
N

ot
ic

es

id
en

tif
ic

at
i

on A
ud

it

Re
so

lv
e

Is
su

es

Re
vi

ew
s

A
pp

ro
va

ls

Re
gi

st
ra

tio
n

Ve
rif

ic
at

io
ns

Di
st

rib
ut

io
n

Ve
rif

ic
at

io
ns

Notices

Incoming:
FOSS

Outgoing:
FOSS + Mods

Ve
rif

ic
at

io
ns

id
en

tif
ic

at
i

on A
ud

it

Re
so

lv
e

Is
su

es

Re
vi

ew
s

A
pp

ro
va

ls

Re
gi

st
ra

tio
n

N
ot

ic
es

Di
st

rib
ut

io
n

Ve
rif

ic
at

io
ns

• Outcome:
• The distribution package contains only software

that has been reviewed and approved
• "Distributed Compliance Artifacts" (as defined in

the OpenChain specification), including
appropriate notice files are included in the
distribution package or other delivery method

• Steps:
• Verify FOSS packages destined for distribution have

been identified and approved
• Verify the reviewed source code matches the binary

equivalents shipping in the product
• Verify all appropriate notices have been included to

inform end-users of their right to request source
code for identified FOSS

• Verify compliance with other identified obligations

Verify that distributed software has been reviewed and approved

Pre-Distribution Verifications

Incoming:
FOSS Outgoing:

FOSS + Mods

Di
st

rib
ut

io
n

id
en

tif
ic

at
i

on A
ud

it

Re
so

lv
e

Is
su

es

Re
vi

ew
s

Re
gi

st
ra

tio
n

N
ot

ic
es

Ve
rif

ic
at

io
ns

A
pp

ro
va

ls

Ve
rif

ic
at

io
ns

• Outcome:
• Obligations to provide accompanying source code are met

• Steps:
• Provide accompanying source code along

with any associated build tools and
documentation (e.g., by uploading to a
distribution website or including in the
distribution package)

• Accompanying source code is identified with
labels as to which product and version to
which it corresponds

Provide accompanying source code as required

Accompanying Source Code Distribution

Incoming:
FOSS

Outgoing:
FOSS + Mods

Ve
rif

ic
at

io
ns

id
en

tif
ic

at
i

on A
ud

it

Re
so

lv
e

Is
su

es

Re
vi

ew
s

A
pp

ro
va

ls

N
ot

ic
es

Ve
rif

ic
at

io
ns

Di
st

rib
ut

io
n

Re
gi

st
ra

tio
n

• Outcome:
• Verified Distributed Compliance Artifacts are appropriately

provided

• Steps:
• Verify accompanying source code (if any)

has been uploaded or distributed correctly
• Verify uploaded or distributed source code

corresponds to the same version that was
approved

• Verify notices have been properly published
and made available

• Verify other identified obligations are met

Validate compliance with license obligations

Final Verifications

Incoming:
FOSS Outgoing:

FOSS + Mods

Check Your Understanding
•What is involved in compliance due diligence (for our example process,
describe the steps at a high level)?
• Identification
• Audit source code
• Resolving issues
• Performing reviews
• Approvals
• Registration/approval tracking
• Notices
• Pre-distribution verifications
• Accompanying source code distribution
• Verification

•What does an architecture review look for?

CHAPTER 7

Avoiding Compliance Pitfalls

Compliance Pitfalls
This chapter will describe some potential pitfalls to avoid in the compliance
process:
1. Intellectual Property (IP) pitfalls
2. License Compliance pitfalls
3. Compliance Process pitfalls

Intellectual Property Pitfalls
Type & Description Discovery Avoidance

Unplanned inclusion of copyleft
FOSS into proprietary or 3rd party
code:

This type of failure occurs during the
development process when engineers
add FOSS code into source code that
is intended to be proprietary in conflict
with the FOSS policy.

This type of failure can be
discovered by scanning or auditing
the source code for possible
matches with:
• FOSS source code
• Copyright notices
Automated source code scanning
tools may be used for this purpose

This type of failure can be
avoided by:
• Offering training to engineering

staff about compliance issues,
the different types of FOSS
licenses and the implications of
including FOSS in proprietary
source code

• Conducting regular source code
scans or audits for all the source
code in the build environment.

Intellectual Property Pitfalls
Type & Description Discovery Avoidance

Unplanned linking of copyleft
FOSS and proprietary source
code:

This type of failure occurs as
a result of linking software with
conflicting or incompatible licenses.
The legal effect of linking is subject to
debate in the FOSS community.

This type of failure can be
discovered using a
dependency tracking tool
that shows any linking between
different software
components.

This type of failure can be
avoided by:

1. Offering training to engineering
staff to avoid linking software
components with licenses that
conflict with you FOSS policies
which will take a position on
these legal risks

2. Continuously running the
dependency tracking tool over
your build environment

Inclusion of proprietary
code into copyleft FOSS through
source code modifications

This type of failure can be
discovered using the audits or scans
to identify and analyze the source
code you introduced to the FOSS
component.

This type of failures can be
avoided by:

1. Offering training to engineering
staff

2. Conducting regular code
audits

Type & Description Avoidance

Failure to Provide Accompanying
Source Code/appropriate license,
attribution or notice information

This type of failure can be avoided by making source code capture and
publishing a checklist item in the product release cycle before the
product becomes available in the market place.

Providing the Incorrect Version of
Accompanying Source Code

This type of failure can be avoided by adding a verification
step into the compliance process to ensure that the accompanying
source code for the binary version is being published.

Failure to Provide Accompanying
Source Code for FOSS Component
Modifications

This type of failure can be avoided by adding a verification
step into the compliance process to ensure that source code for
modifications are published, rather than only the original source code
for the FOSS component

License Compliance Pitfalls

License Compliance Pitfalls
Type & Description Avoidance

Failure to mark FOSS
Source Code
Modifications:

Failure to mark FOSS source
code that has been changed
as required by the FOSS license (or
providing information about
modifications which has an insufficient
level of detail or clarity to satisfy the
license)

This type of failure can be avoided by:
1. Adding source code modification marking as a verification step

before releasing the source code
2. Offering training to engineering staff to ensure they update

copyright markings or license information of all FOSS or
proprietary software that is going to be released to the public

Compliance Process Failures
Description Avoidance Prevention

Failure by developers to
seek approval
to use FOSS

This type of failure can be
avoided by offering training to
Engineering staff on the
company’s FOSS policies and
processes.

This type of failure can be
prevented by:

1. Conducting periodic full scan for
the software platform to detect
any “undeclared” FOSS usage

2. Offering training to engineering
staff on the company's FOSS
policies and processes

3. Including compliance in the
employees performance review

Failure to take the
FOSS training

This type of failure can be
avoided by ensuring that the
completion of the FOSS training is
part of the employee’s
professional development plan
and it is monitored for completion
as part of the performance review

This type of failure can be
prevented by mandating
engineering staff to take the
FOSS training by a specific date

Compliance Process Failures
Description Avoidance Prevention

Failure to audit
the source code

This type of failure can be avoided by:
1. Conducting periodic source code

scans/audits
2. Ensuring that auditing is a milestone in the

iterative development process

This type of failure can be
prevented by:

1. Providing proper staffing as to
not fall behind in schedule

2. Enforcing periodic audits

Failure to resolve
the audit findings
(analyzing the
"hits" reported
by a scan tool or audit)

This type of failure can be avoided by
not allowing a compliance ticket to be
resolved (i.e. closed) if the audit report
is not finalized.

This type of failure can be
prevented by implementing blocks in

approvals in the FOSS
compliance process

Failure to seek review of
FOSS in a timely manner

This type of failure can be avoided
by initiating FOSS Review requests early
even if engineering did not yet
decide on the adoption of the FOSS
source code

This type of failure can be
prevented through education

Ensure Compliance Prior to Product Shipment
•Companies must make compliance a priority before any product (in
whatever form) ships
•Prioritizing compliance promotes:
•More effective use of FOSS within your organization
•Better relations with the FOSS community and FOSS organizations

Establishing Community Relationships
As a company that uses FOSS in a
commercial product, it is best to
create and maintain a good
relationship with the FOSS community
- in particular, with the specific
communities related to the FOSS
projects you use and deploy in your
commercial products.

In addition, good relationships with
FOSS organizations can be very
helpful in advising on best way to be
compliant and also help out if you
experience a compliance issue.

Good relationships with the software
communities may also be helpful for
two-way communication: upstreaming
improvements and getting support
from the software developers.

Check Your Understanding
•What types of pitfalls can occur in FOSS compliance?
•Give an example of an intellectual property failure.
•Give an example of a license compliance failure.
•Give an example of a compliance process failure.
•What are the benefits of prioritizing compliance?
•What are the benefits of maintaining a good community
relationship?

CHAPTER 8

Developer Guidelines

Developer Guidelines
•Select code from high quality, well supported FOSS communities
•Seek guidance

• Request formal approval for each FOSS component you are using
• Do not check un-reviewed code into any internal source tree
• Request formal approval for outside contributions to FOSS projects

•Preserve existing licensing information
• Do not remove or in any way disturb existing FOSS licensing copyrights or other licensing

information from any FOSS components that you use. All copyright and licensing
information is to remain intact in all FOSS components

• Do not re-name FOSS components unless you are required to under the FOSS license (e.g.,
required renaming of modified versions)

•Gather and retain FOSS project information required for your FOSS review
process

Anticipate Compliance Process Requirements
• Include time required to follow established FOSS policy in work plans

• Follow the developer guidelines for using FOSS software, particularly incorporating or linking FOSS
code into proprietary or third party source code or vice versa

• Review architecture plans and avoid mixing components governed by incompatible FOSS licenses
• Always update compliance verification - for every product

• Verify compliance on a product-by-product basis: Just because a FOSS package is approved for
use in one product does not necessarily mean it will be approved for use in a second product

• And for every upgrade to newer versions of FOSS
• Ensure that each new version of the same FOSS component is reviewed and approved
• When you upgrade the version of a FOSS package, make sure that the license of the new version is

the same as the license of the older used version (license changes can occur between version
upgrades)

• If a FOSS project’s license changes, ensure that compliance records are updated and that the new
license does not create a conflict

Compliance Process Applies to all FOSS
components
• In-bound software

• Take steps to understand what FOSS is included in software delivered by suppliers
• Evaluate your obligations for all of the software that will be included in your products
• Always audit source code you received from your software providers or alternatively make it

a company policy that software providers must deliver you a source code audit report for
any source code you receive

Check Your Understanding
•Name some general guidelines developers can practice when working with
FOSS.
•Should you remove or alter FOSS license header information?
•Name some important steps in a compliance process.
•How can a new version of a previously-reviewed FOSS component create new
compliance issues?
•What risks should you address with in-bound software?

Learn more through the free Compliance Basics for Developers hosted by the
Linux Foundation at:
https://training.linuxfoundation.org/linux-courses/open-source-compliance-courses/
compliance-basics-for-developers

https://training.linuxfoundation.org/linux-courses/open-source-compliance-courses/compliance-basics-for-developers
https://training.linuxfoundation.org/linux-courses/open-source-compliance-courses/compliance-basics-for-developers
https://training.linuxfoundation.org/linux-courses/open-source-compliance-courses/compliance-basics-for-developers
https://training.linuxfoundation.org/linux-courses/open-source-compliance-courses/compliance-basics-for-developers

