
Towards Sustainable Systems with the

Civil Infrastructure Platform

Urs Gleim, Siemens AG
Yoshitake Kobayashi, Toshiba

LinuxCon Europe, Berlin, 6th October 2016

1

Definition

Civil Infrastructure Systems are technical systems responsible for supervision,

control, and management of infrastructure supporting human activities,

including, for example,

 Electric power generation

 Energy distribution

 Oil and gas

 Water and wastewater

 Healthcare

 Communications

 Transportation

 Collections of buildings that make up urban & rural communities.

These networks deliver essential services, provide shelter, and support social

interactions and economic development. They are society's lifelines.1)

1) adapted from https://www.ce.udel.edu/current/graduate_program/civil.html 2

https://www.ce.udel.edu/current/graduate_program/civil.html

Linux is widely used in …

3

Transport Energy Industry Others

Rail automation

Automatic ticket gates

Vehicle control

Power Generation

Turbine Control

Industry automation

Industrial communication

CNC control

Building automation

Healthcare

Broadcasting

Civil infrastructure systems

Core characteristics

Industrial grade

 Reliability

 Functional Safety

 Security

 Real-time capabilities

Sustainability

 Product life-cycles of 10 – 60 years

Conservative update strategy

 Firmware updates only if industrial grade is jeopardized

 Minimize risk of regression

 Keeping regression test and certification efforts low

Development time

 Shorter development times for more
complex systems

Maintenance costs

 Low maintenance costs for commonly
uses software components

 Low commissioning and update costs

Business needs

Development costs

 Don‘t re-invent the wheel

The evolution of civil infrastructure systems

Proprietary nature

 Systems are built from the ground up for each
product

 little re-use of existing software building blocks

 Closed systems

Connected systems

 Interoperability due to advances in machine-to-
machine connectivity

 Standardization of communication

 Plug and play based system designs

Commoditization

 Increased utilization of commodity (open source)
components, e.g., operating system, virtualization

 Extensibility, e.g., for analytics

Stand-alone systems

 Limited vulnerability

 Updates can only applied with physical access to
the systems

 High commissioning efforts

Technology changes

5

Things to be done

• Join forces for commodity components

• Ensure industrial grade for the operating system platform focusing
on reliability, security, real-time capability and functional safety

• Increase upstream work in order to increase quality
and to avoid maintenance of patches

• Share maintenance costs

• Long-term availability and long-term support are crucial

• Innovate for future technology

• Support industrial IoT architectures and
state-of-the art machine-to-machine connectivity

6

Civil infrastructure systems require
a super long-term maintained
industrial-grade embedded Linux platform
for a smart digital future

7

Civil Infrastructure Platform aims to provide industrial grade software

Establish an open source “base layer” of industrial grade software to
enable the use and implementation in infrastructure projects of software
building blocks that meet the safety, reliability, security and maintainability
requirements.

• Fill the gap between capabilities of the existing OSS and industrial
requirements.

• Provide reference implementation

• Trigger development of an emerging ecosystem including tools and
domain specific extensions

Initial focus on establishing long term maintenance infrastructure for
selected Open Source components, funded by participating membership
fees CIP Reference Hardware

CIP Reference

Filesystem

image with SDK

CIP Kernel

U
se

r
sp

ac
e

K
e

rn
el

Non-CIP packages

Any Linux distribution (e.g. Yocto
Project, Debian, openSUSE, etc.)

may extend/include CIP packages.

H
ar

d
w

ar
e

Specifications Documentation

Im
p

le
m

en
t

8

Railway Example

9

3 – 5 years development time

2 – 4 years customer specific extensions

1 year initial safety certifications / authorization

3 – 6 months safety certifications / authorization for follow-up releases

(depending on amount of changes)

25 – 50 years lifetime

Image: http://www.deutschebahn.com/contentblob/10862328/20160301+Stw+M%C3%BClheim+Innenansicht+1+(1)/data.jpg

Power Plant Control Example

10

3 – 5 years development time

0.5 – 4 years customer specific extensions

6 – 8 years supply time

15+ years hardware maintenance after latest shipment

20 – 60 years product lifetime

Image: http://zdnet1.cbsistatic.com/hub/i/r/2016/02/29/10863f77-89b2-40c0-9d8c-dbaa5feb65be/resize/770xauto/490141cef9bddc0db66b492698b53a50/powerplant.jpg

Why maintaining old kernels?

1. Fear of regressions in newer kernels
(performance and system stability)

2. Reducing re-certifications costs and time by minimizing changes

3. Reduced number of kernel versions to be provided by SoC vendors
(like LSK or LTSI)

4. Serving as a common base for vendor-specific kernel forks
and out-of-tree code
(yes, we prefer upstreaming…)

11see also http://lwn.net/Articles/700530/

http://lwn.net/Articles/700530/

Scope of activities
U

se
r

sp
ac

e
K

er
n

el
 s

p
ac

e

Linux Kernel

App container
infrastructure (mid-term)

App Framework
(optionally, mid-term)

Middleware/Libraries

Safe & Secure

Update
Monitoring

Domain Specific communication
(e.g. OPC UA)

Shared config. & logging

Real-time support
Real-time /

safe virtualization

Tools Concepts

Build environment
(e.g. yocto recipes)

Test automation

Tracing & reporting

tools

Configuration

management

Device management
(update, download)

Functional safety
architecture/strategy,
including compliance
w/ standards (e.g., NERC
CIP, IEC61508)

Long-term support
Strategy:
security patch
management

Standardization
collaborative effort with
others

License clearing

Export Control
Classification

On device software stack Product development
and maintenance

Application life-

cycle management

Security

12

Target Systems

13

Out of scope:

• Enterprise IT and cloud system platforms.

ARM M0/M0+/M3/M4

8/16/32-bit, < 100 MHz 32-bit, <1 GHz 32/64-bit, <2 GHz 64-bit, >2 GHz

n MiB flash n GiB flash n GiB flash n TiB flash/HDD

< 1 MiB < 1 GiB < 4 GiB > 4 GiB

Arduino class board Raspberry Pi class board SoC-FPGA, e.g.Zync industrial PC

ARM M4/7,A9,R4/5/7

Networked Node Embedded ServerEmbedded ComputerEmbedded Control Unit

special purpose & server based controllerscontrol systems

multi-purpose controllersPLC gateways

Sensor, field device

1 2 3 4

ARM A9/A35,R7,Intel Atom

… Device class no.

Architecture, clock

non-volatile storage

HW ref. platform

ARM offerings1)

RAM

application examples

ARM A53/A72,Core,Xeon

Intel offerings1)

M0/M0+/M3/M4 M4/7, A9, R4/5/7 ARM A9/A35, R7 ARM A53/A72

ARM M0/M0+/M3/M4 ARM M4/7,A9,R4/5/7 ARM A9/A35,R7,Intel Atom ARM A53/A72,Core,XeonQuark MCU Quark SoC Atom Core, Xeon

Target systems

Reference hardware for common software platform:

 Start from working the common HW platform (PC)

 Later extend it to small/low power devices

1 41) Typical configurations Q1/2016

Relationship between CIP and other projects

Civil Infrastructure Platform

Collaborative
Projects

(e.g. RTL, Yocto, CII)

Existing
project / distro

New CIP
sub-project

Developers

CIP FTE’s
Developers from

member companies

Budget

Member companies
…

Existing project

CIP

source code

repositories

Open source projects (Upstream work)

contribution
Optional: funding of

selected projects

CIP will do not only
development for CIP
but also fund or
contribute to related
upstream projects

Existing projects
(unchanged)

Open source projects

14

CIP Super Long
Term Support

Project

• Import source code from
open source project or
existing distribution to CIP

• Backport patches from
upstream to CIP version

Upstream first policy for implementation of new features

All deltas to mainline to be treated as technical debt
• Avoid parallel source trees, directly discuss features in upstream projects

• Upstream first for fixes and features, just like for stable kernels

• Afterwards back-port to super long-term versions driven by CIP

15

Upstream
Project 1

Upstream
Project 2

Project 1
(S)LTS

versions

Project 2
(S)LTS

versions

new features

new features

backport

new features

CIP members / CIP FTEs CIP members / CIP FTEs

…

Super Long Term Support - Motivation

16

Upstream

Kernel tree

Long-term support（LTS）

Backports bug fixes for 2 years

Long-term support

Initiative（LTSI）

Add extra functionality on LTS for

embedded systems and support it

for 2 years

About 3 months

Approx. 2-5 years

Approx. 2-5 years

K
e
rn
e
l.
o
rg

C
E
W
G

Every company,

every project

10 years – 15 years

Backport of bug fixes and

hardware support: the same work

is done multiple times for different

versions.

Release / Maintenance release

CIP kernel super long term support (SLTS) overview

17

Long-term support（LTS）

Backports bug fixes for 2 years

Long-term support

Initiative（LTSI）

Add extra functionality on LTS for

embedded systems and support it

for 2 years

CIP super long-term

supported kernel

Approx. 3 months

Approx. 2-5 years

Approx. 2-5 years

Goal: 10 years – 15 years

Need to be maintained
more than 10 years

K
e
rn
e
l.
o
rg

C
E
W
G

C
I
P

Approx. every 3 years

Release / Maintenance release
After 5 years merge window for new

features will be closed, CIP kernel
changes focus to security fixes.

Backports, e.g. for SoC
support reviewed by CIP

Upstream

Kernel tree

Plans for CIP SLTS kernel development

• Development Process
• CIP will establish development process similar to LTSI

• Merge window for feature backporting from upstream kernel

• Validation period after the merge window

• CIP will have periodical merge windows and validation periods
for feature backporting

• Validation
• Establish kernel test infrastructure

• Enhance on-target testing beyond boot-tests

• Share the results for open spec boards

18

Super Long-Term Stable Team

• Ben Hutchings is first super long-term kernel maintainer
• Well-known Debian contributor and package maintainer

• Currently LTS maintainer for 3.2 and 3.16

• Ben will be supported by one additional developer (TBA)

• Work started in September 2016
• Setup of SLTS development and validation process

• Prepare and perform first SLTS kernel release

• Support CIP in extending SLTS model to further core packages

19

Selection Criteria for First SLTS Kernel Version

• LTS version, ideally synchronized with LTSI

• Broadly used for civil infrastructure systems
• Currently deployed products

• Upcoming products

• We are open for discussions / proposals!

• Final decision by CIP Technical Steering Committee

 onging: CIP kernel maintenance policy

20

CIP Testing Considerations

Testing goals
• Perform testing on real HW (VM: no

detail quirks and real-world issues)

• Focus on CIP reference platforms

• Critical Fixes: Build & test within
hours on all machines

• No continuous functional testing
(for instance, latencies)

• Super-Long-Term result
preservation

• Align approach with established
community best practices

Current Status
• Initial CIP-private instance of

Kernel CI (vagrant based)
• Member companies can run local labs

• HW rack standard (standardized
physical and electrical setup) under
consideration

• Purely local operation; results via
central public web server once fully
operational

• Job + Build scheduling: To be
defined (likely Fuego and friends)

• Feed results back to Kernel CI?

21

Kernel-CI: https://kernelci.org/
Fuego: http://elinux.org/Fuego

https://kernelci.org/
http://elinux.org/Fuego

Selection Criteria for Userspace Packages

• Essential for booting and basic functionality

• Commonly used in civil infrastructure systems

• Security sensitive

• Likely maintainable over 10 years+ period

• Again: We are open for proposals!

22

Further Candidates for Super Long-term Maintenance

• Flex

• Bison

• autoconf

• automake

• bc

• bison

• Bzip2

• Curl

• Db

• Dbus

• Expat

• Flex

• gawk

• Gdb

23

An Example minimal set of “CIP kernel” and “CIP core” packages for initial scope

NOTE: The maintenance effort varies considerably for different packages.

Core
Packages

(SLTS)

Kernel
(SLTS)

Dev
packages

• Kernel
• Linux kernel (cooperation with LTSI)

• PREEMPT_RT patch

• Bootloader
• U-boot

• Shells / Utilities
• Busybox

• Base libraries
• Glibc

• Tool Chain
• Binutils

• GCC

• Security
• Openssl

• Openssh

• Git

• Glib

• Gmp

• Gzip

• gettext

• Kbd

• Libibverbs

• Libtool

• Libxml2

• Mpclib

• Mpfr4

• Ncurses

• Make

• M4

• pax-utils

• Pciutils

• Perl

• pkg-config

• Popt

• Procps

• Quilt

• Readline

• sysfsutils

• Tar

• Unifdef

• Zlib

Super Long-term support Maintain for Reproducible build

Development plan

24

CIP will increase the development effort to create industrial grade common base-layer

Phase 1:
• Define supported kernel

subsystems, arch.
• Initial SLTS component selection
• Select SLTS versions
• Set-up maintenance

infrastructure (build, test)

Phase 2:
• Patch collection, stabilization, back

port of patches for CIP kernel
packages

• Support more subsystems
• Additional core packages

Core
Packages

Kernel
(SLTS)

Phase 3:
• Domain specific enhancements,

e.g. communication protocols,
industrial IoT middleware

• Optionally: more subystems
• Optionally: more core packages

add. pkgs

Core
Packages

Kernel
(SLTS)

add. pkgs

Core
Packages

Kernel
(SLTS)

Milestones

• 2016:
• Project launched announcement at Embedded Linux Conference 2016
• Requirements defined, base use cases defined, technical & non-technical processes

established (license clearing, long-term support), maintenance plan
• Common software stack defined, related core projects agreed (e.g. PREEMT_RT,

Xenomai), maintenance infrastructure set up
• Domain specific extensions defined, tool chain defined, test strategy defined
• Maintenance to be operational and running

• 2017:
• Realization phase of selected components

• 2018:
• Advancement, improvements, new features

25

Please join!

26

Provide a super long-term maintained industrial-grade embedded Linux platform.

Platinum Members

Silver Members

Current members

http://cip-project.org/
http://cip-project.org/

Why join CIP?

• Participate in project decisions through the governing board and/or committees;
leverage an ecosystem of like-minded participants to help drive project priorities as
a community.

• Provide technical direction through a TSC representative enabling fast engagement
and input into the technical direction of the project

• Demonstrate support for CIP.

• Priority access to any events, sponsorship and marketing opportunities. Potential
events include:

• Embedded Linux Conference
• LinuxCon
• Collaboration summits
• Other community events

• Visibility on the CIP website and in membership collateral

27

Contact Information and Resources

To get the latest information, please contact:
• Noriaki Fukuyasu fukuyasu@linuxfoundation.org

• Urs Gleim urs.gleim@siemens.com

• Yoshitake Kobayashi yoshitake.kobayashi@toshiba.co.jp

• Hiroshi Mine hiroshi.mine.vd@hitachi.com

Other resources
• CIP Web site https://www.cip-project.org

• CIP Mailing list cip-dev@lists.cip-project.org

• CIP Wiki https://wiki.linuxfoundation.org/civilinfrastructureplatform/

28

mailto:fukuyasu@linuxfoundation.org
mailto:urs.gleim@siemens.com
mailto:yoshitake.kobayashi@toshiba.co.jp
mailto:hiroshi.mine.vd@hitachi.com
https://www.cip-project.org/
mailto:cip-dev@lists.linuxfoundation.org
https://wiki.linuxfoundation.org/civilinfrastructureplatform/

29

Questions?

30

Thank you!

